PC Based Number Plate Recognition System
Charl Coetzee, Member, IEEE, Charl Botha and David Weber

Abstract— A PC based number plate recognition system
is presented. Digital gray-level images of cars are thresh-
olded using the Niblack algorithm, which was found to out-
perform all binarization techniques previously used in sim-
ilar systems. A simple yet highly effective rule-based algo-
rithm detects the position and size of number plates. Char-
acters are segmented from the thresholded plate using blob-
colouring, and passed as 15x15 pixel bitmaps to a neural
network based optical character recognition (OCR) system.
A novel dimension reduction technique reduces the neural
network inputs from 225 to 50 features. Six small networks
in parallel are used, each recognising six characters.

The system can recognize single and double line plates
under varying lighting conditions and slight rotation. Suc-
cessful recognition of complete registration plates is about
86.1%.

Keywords— number plate recognition, optical character
recognition, neural networks, image processing, threshold-
ing, dimension reduction

I. INTRODUCTION

The automatic detection and recognition of car number
plates has become an important application of artificial
vision systems. The object is to develop a system whereby
cars passing a certain point are digitally photographed, and
then identified electronically by locating the number plate
in the image, segmenting the characters from the located
plate and then recognizing them.

Some applications for a number plate recognition system
are:

o Traffic flow measurement and planning (origin / destina-
tion surveys)

« Tracking stolen vehicles

« Control and security at tolling areas, e.g. parking garages
« Traffic law enforcement (automatically identifying speed-
ers, illegal parking, etc.)

The system could also be adapted for use in reading e.g.:

« Warehouse box stencil codes
 Train rolling stock codes
e Aircraft tailcodes

This system consists of two high-level stages: In the first
stage, the number plate is detected and segmented from
a digital image of the car being examined. This is docu-
mented in section IT of this paper. The plate location and
size are passed to the optical character recognition (OCR)
subsystem, documented in section III. Experimental re-
sults are shown in section IV.

Images were acquired under varying lighting conditions
— no special lighting was used.

The authors are with the Department of Electrical and Electronic
Engineering, University of Stellenbosch, Private Bag X1, Matieland
7602, South Africa. Email: weber@espresso.ee.sun.ac.za

0-7803-4756-0/98/$10.00 1998 IEEE 605

II. LiCENSE PLATE DETECTION AND SEGMENTATION
(PLATEFINDER)

Figure 1 shows a high level block diagram of the
platefinder algorithm’s working. In the following sections
we document each of the functional blocks in this figure.

A. Image Pre-processing

The first step is to threshold the image to discount the
gray-level information. Thresholding results in a binary
image which facilitates rule-based pixel-oriented image pro-
cessing.

The Niblack Binarization algorithm [1] was selected as
it provided robust thresholding in the presence of shadows
and other image defects. It also provides and excellent
choice of input for the OCR stage (section III).

The algorithm calculates a local binarization threshold
by calculating the local standard deviation and mean and
then adding the mean to the product of a predefined weight
constant and the standard deviation:

T(z,y) = w x o(z,y) + p(z,y),

where T is the threshold at pixel (z,y), w is the weight, and
o(z,y) and p(z,y) are the standard deviation and mean of
the local neighbourhood of pixel (z,y) respectively. This
makes for a threshold that intelligently adapts to its pixel
neighbourhood. The neighbourhood used was 15 by 15
pixels.

B. Digit location

Entities that could possibly be alphanumerics are located
by this stage. The logic iterates through all the pixels in
an image and checks at every iteration, using a set of rules,
whether there’s a candidate digit at the current position.
This consists of the two following steps:

B.1 Adaptive size bounding box searching

Previous work [2] used expected alphanumeric size as a
criterium for a candidate digit. This is a fair assumption, if
we take into account that the distance between camera and
car stays fairly constant and assume that the true size of the
digits is also more or less constant, or within a set range.
This assumption is used by the platefinder algorithm.

The “adaptive bounding box searching” can be further
divided into three sub-stages (figure 2):

1. An upside-down “L”-shaped construct of predefined di-
mensions is moved through the image. At every pixel po-
sition the following checks are done:

(a) If there are pixels on the vertical or horizontal lines
of the upside-down “L”, there is no digit at this position.

(b) If there are no “on” pixels directly adjacent to the
top bar and the left bar of the “L”, there is no digit at this
position.

Car Digit Plate Final Plat,
R e
Image Pre-procj—» Niblack j—f Logation"—’ areas l—»{plate Tma
g location location ge
Plate
Geom

Fig. 1. High level block-diagram of the platefinder algorithm

Fig. 2. Illustration of adaptive size bounding box

If a position satisfies these conditions, it may indicate the
upper-left corner of a background-bounded object.

2. A second vertical bar is moved, pixel for pixel, to the
right, starting at the position to the immediate right of the
left vertical line discussed above. This second bar is moved
until there are no “on” pixels anywhere on its vertical ex-
tent. In this way the width of the detected entity is tenta-
tively calculated and if this width falls outside of a certain
range (defined as percentages of the expected width), the
position is disqualified. However, this means that a large
entity with a narrow extension on its top would still be
flagged as a potential digit.

3. In this stage, a second horizontal bar, as wide as the
width determined in the above stage, is moved downwards
until there are no “on” pixels anywhere on its horizontal
extent. If the height determined in this way is within a
certain range, again predefined as a percentage variance of
the expected digit height, this position is allowed through
to the next step.

B.2 Pixel coverage checking

“On” pixels in the calculated area are counted and a cov-
erage percentage is calculated. If this percentage is above
15%, the position is classified as a potential alpha-numeric.
If not, it’s disqualified.

This coverage rule is based on the assumption that a cor-
rectly edge-detected or binarized digit will have a minimum
pixel population of the area bounded by its extremities. In
this case, an “L” would be expected to have the least per-
centage coverage.! The predefined coverage minimum is
set with this in mind—a wide safety margin is built-in.

INote that an “I” would have very good coverage, seeing that the
bounding box would size so as to be completely filled by the “I”.

606

Plate bounding box
—

Alphanumerics under inspection

Fig. 4. Illustration of working of plate bounding box

C. Plate areas location

The logic of this stage uses the positions of the digit-like
entities detected in the previous stage to attempt determin-
ing the geometries (i.e. location and size) of all candidate
plate areas (figure 3).

A bounding box of the width of an average digit-width
wider than the widest expected plate size and height of a
few pixels is used in this step. Only the upper-left cor-
ner of a digit has to fit inside the digit-box for this digit
to be tagged as part of the plate area. It is then logical
that the height of the plate bounding box will determine
the rotation invariance of this detection stage. Figure 4
illustrates this concept. If the height is chosen too great,
too much vertical variance is allowed, and invalid plate ar-
eas will easily slip through. If the height is chosen too
small, plates that are somewhat rotated due to a imperfect
camera setup or poor capture will not be detected. Experi-
mentation favoured a rule-of-thumb value of half the height
of the expected digit?. Also, because only the upper-left
“corners” of the digit have to be bounded by the box, more
width-variance than immediately thought is budgeted for.

The algorithm then starts with the first detected digit
as rendered by the previous stage, and places the bound-
ing box’s upper-left corner on that digit’s upper-left corner
position. The bounding box is horizontally shrunk if too
close to the far right edge of the image. All other digits
in the detected digit list are then checked for inclusion in
the region bounded by the plate box. If there’s only the
one digit in the bounding box, it is obviously disqualified.
A candidate area with only two digits is not disqualified,
as this might constitute part of a two-line number plate.
The true width of this candidate plate is then calculated
by subtracting the coordinate of the leftmost digit from the
coordinate of the rightmost digit and adding the width of
the rightmost digit. The maximum reasonable width of the

- candidate plate is then calculated by adding all the widths

2This implies that if a plate’s rotation causes a height difference
between the start and end of the candidate plate of less than half the
expected digit height, the plate will still be detected

(There are M digits

in the valid digit list)

Place plate
bounding box

={ The End |

(a list of candidate
plates has been
generated)

at {(x,y) of
ith valid digit

Does jth valid
digit fit in
plate bounding box?

add jth valiad

——'_| Disqualify l‘—

true plate width <
max expected width ?

NO!

digit as part of
candidate plate

YES

this is a valid
candidate, add
to list

Fig. 3. Flow chart of plate areas location stage (first stage)

of the constituent digits and multiplying by a preset con-
stant. If the true width of the plate area is more than the
maximum reasonable width, the candidate is also disqual-
ified. The preset constant used to calculate the maximum
reasonable width of a candidate plate has been chosen as
two, which yields good results. Choosing this value too
small disqualifies valid candidates with digits that are fur-
ther apart than the norm, or candidates with digits that
weren’t detected by the digit location logic. Choosing it too
high simply lets too many invalid plate candidates through.
The process in the paragraph above is repeated for every
digit in the located digits list, and all the candidate plates’
coordinates and dimensions are stored in another list.

D. Final plate location

This stage iterates through all the candidate plate areas
and eliminates all children, i.e. any plates that are spatially
totally contained by other plates in the list.

We find that after this stage that there is often only one
plate candidate left, in which case this is obviously returned
as the true plate location and dimensions.

In the case of more than one candidate plate area, the
plate with the most digits is chosen as a the dominant
candidate, a step that was justified by experimental data.
The other plate areas are then examined for possibly being
an extra number plate line above or below the dominant
candidate. If a candidate falls within the horizontal range
of the dominant plate’s width, and is close enough to the
bottom or top of the dominant plate, it is “fused” with the
plate, i.e. logic calculates new coordinates and dimensions
for a two-line number plate. This new width is obviously
the true width of the widest number plate line, the new
column coordinate is the column coordinate of the leftmost
digit in the new “fused” set, and the new row coordinate is
the row coordinate of the topmost digit in the “fused” set.

If fusion takes place, the fused plate is deduced to be the

607

Fig. 5. Example of segmented two-line number plate

true number plate (figure 5). If no fusion takes place, and
the dominant plate candidate has more than two digits, it’s
seen to be the true plate, else it’s disqualified and the logic
deduces that there are no detectable plates present in the
image.

90% of plates are located successfully (97.2% if patholog-
ical cases, i.e. obscured or missing plates, are discarded).

III. OpTICAL CHARACTER RECOGNITION (OCR)

Once the plate has been located, it is subjected to sepa-
rate processing, as illustrated in figure 6. The thresholded
plate is extracted and inverted if necessary: In all cases
white letters on a black background are presented to the
segmentation algorithm.

The individual characters are then extracted from the
image using a fast implementation of the blob colouring
algorithm. [3]

Each individual character bitmap is passed to the neural
network classifier to be identified. A measure of classifica-
tion confidence is also generated.

A. Thresholding

The thresholding done on the full car image (to detect
the plate) is not necessarily sufficient for gopod OCR. Hence
the OCR research used only the coordinates of the plate,
started with the gray-scale plate image, and determined
suitable thresholding.

A

Fig. 6. OCR processing stages

The thresholding procedure should introduce as little
noise as possible, since subsequent processing steps may be
adversely affected by this. Also, because the lighting condi-
tions vary widely over a plate, locally adaptive thresholding
is required. The area over which the algorithm adapts is
chosen to be small, yet large enough always to contain both
plate background and part of a character.

Eleven adaptive thresholding algorithms from popular
literature were tested using {1]. The Niblack algorithm
gave the best overall performance.

Fortunately, the this algorithm also functions the best
for the plate-detection part of the system. The thresholded
result from the plate detector can be used directly for the
OCR.

B. Character Eztraction (Segmentation)

To extract the individual characters from the plate,
various segmentation algorithms were tested. The tradi-
tional peak-valley method (0-degree radon transform) per-
formed unsatisfactorily — no precise method for determin-
ing breaks between characters could be found.

Our approach was rather to analyse contiguous regions.
Number plates use only uppercase letters and numbers, all
of which are contiguous (unlike the letter “i”). In general
these remain contiguous after thresholding.

Blob Colouring [3] is used. This is a region-growing
method which operates on binary images. It labels pix-

608

els which form 8-connected contiguous regions (“blobs”),
each region receiving a unique label. It thus “colours” the
“blobs”.

To discard artifacts, bounding boxes for each blob are
calculated and a set of heuristics applied. Too small or
large blobs are discarded. This eliminates borders, noise
blobs, hyphens and the Gauteng registration logo.

Our method has the following advantages:

» Image noise in the vicinity of the character is not ex-
tracted with the character.

+ Extracted noise blocks can be discarded.

o It automatically processes two-line plates, and plates at
slight rotation.

Disadvantages are: .

o A character must be continuously connected to be ex-
tracted.

« If different characters are connected in some way they
will be extracted together.

Each character bitmap is rescaled to 15 x 15 pixels, main-
taining aspect ratio. This is done using split, merge and
zero-pad [4]. This helps to make the OCR translation and
scale invariant. The OCR networks are in turn trained to
be rotation invariant.

C. Classifier

The OCR classifier is neural network based. Unfortu-
nately, the 15x15 bitmap size implies an input space of 225
features. The resulting network is too large for successful
training [5][6].

Our classifier solves this problem in two ways: The 225
input dimensions are reduced to 50, and a special network
structure is used.

C.1 Binarization Linear Transform (BLT)

We have developed a novel dimension reduction tech-
nique for our system. This method reduces the input
dimensions by more than is possible with the vanilla
Karhunen-Loeve Transform (KLT) (see Table I), yet yields
similar performance. Furthermore, no information is dis-
carded.

Since each input pixel is constrained to either “on” or
“off” (1 or 0), there are only 2225 possible input patterns,
which form a set of 2225 discrete points in 225-dimensional
space.

If sets of the input pixels are grouped (e.g. 00 01
1 1 0 0), this group can be seen as the binary number
28 by weighting each pixel by the respective power of 2.
This entire group of 8 pixels can thus be represented by
1 feature, with a one-to-one correspondence between each
original 8-dimensional vector and a unique 1-D number.

Figure 7 demonstrates the concept for an 8 x 8 bitmap.
The “1” in the figure would transform to the feature vector
[28 60 124 28 28 28 28 28].

It is thus possible to transform the 225-dimensional space
into a 50-dimensional space with the input patterns still
forming a set of 222° discrete points. These vectors are
no longer orthogonal or linearly independent, but since all
points are discrete, classes are still completely separable.

28 60 124
00011100 00111100 01111100
OOOmMEEO0 COssEssc0 OEmEsEsEc0
W] || —— A
m [[[mm
COCmmmCI0

T i
mnm | | [

OCMmmCIC
man | us]

Fig. 7. Example BLT for 8x8 bitmap

This can be implemented by a simple matrix multiplica-
tion.

We used the following transform to obtain 50 features:
write the 15x15 = 225 pixels as a binary row vector x, then
multiply by the 225 x 50 matrix B:

T= [1 Ty I3 925] x B
with
o = 0 if pixel is off,
711 if pixel is on.
and
r 8/15 0 0 0 7
4/15 0 0 0
2/15 0 0 0
1/15 0 0 0
0 16/31 0 0
0 8/31 0 0
0 4/31 0 0
0 2/31 0 0
0 1/31 0 0
B=| : P
0 0 8/15 0
0 0 4/15 0
0 0 2/15 0
0 0 1/15 0
0 0 0 16/31
0 0 0 8/31
0 0 0 4/31
0 0 0 2/31
L O 0 0 1/31]

This transform has the effect of alternately grouping 4
and 5 pixels per feature. This alternate grouping helps
to spread any numerical inaccuracies which may arise dur-
ing the subsequent floating point calculations of the neural
network.

Table I shows various experimental recognition rates ob-
tained using the KLT and BLT on small databases. Fifty
output features were chosen, since for these database sizes,
the KLT will retain 90% of training information. However,
as characters are added to the database, this percentage
declines rapidly, as does the performance of the KLT.

Since the BLT transformation matrix B is independent
of the training data, this technique is also well-suited to

609

TABLE I
BLT vs. KLT FOR REDUCTION OF 225 INPUTS TO 50 FEATURES

No. of characters tested | KLT Correct [BLT Correct
332 87.3 % 88.9 %
378 81.5 % 804 %
437 83.1% 86.3 %
647 83.2 % 83.3%
INPUT HIDDEN OUTPUT
HIDDEN

C .

Fig. 8. OCR neural network structure

systems utilizing on-line training. By comparison, use of
the KLT would entail a recalculation of the transformation
matrix for each added training pattern.

C.2 Neural Network Structure

The traditional route has been to create a hierarchical
multilayer perceptron (HMLP)[7]. However, this network
is not easily optimised while experimenting, since this typ-
ically entails cumbersome manual changes to the network
structure. Since network training is largely guided by trial
and error, this is undesirable.

Our approach is to use 6 smaller MLPs, each with 6
outputs, to recognise 6 characters. Each network is trained
to produce zero outputs for classes it should not recognise,
hence effectively increasing training data 6 times for each
network.

The full network structure (figure 8) thus consists of
these six subnetworks in parallel (sharing the input layer),
it is thus a special case of an HMLP network. Each sub-
network is separately optimised for its own group of char-
acters.

The largest of all 36 outputs is chosen as the classifica-
tion — i.e. “winner-takes-all” is used. Classification con-
fidence is estimated by taking the difference between the
two largest outputs.

IV. EXPERIMENTAL RESULTS

The system was tested with a set of images not used
during design and training. The size of the plates in the
images were about 190 x 56 pixels.

The system completed full plate recognition (including
location and segmentation) in an average of 1.5 seconds.
It is foreseen that this time can be reduced to less than
a second if the code is optimized (which was not the case
during these tests).

If pathological cases (i.e. plates with overhangs, tow
hooks and very bad lighting) were discarded, as in [2] and
its references, 86.1% of plates were located and read cor-
rectly.

Performance for individual system subsections were as
follows:

» 90% of plates were located successfully (97.2% if patho-
logical cases were discarded).

e Characters were segmented correctly from 92.5% of man-
nally extracted plates, 96.7% of these characters were cor-
rectly classified and complete manually extracted plates
(pathological cases included) were segmented and read with
82.5% accuracy.

V. CONCLUSIONS

In practice, system performance is aided by supplying
the system with large plate images. This can be achieved
by ensuring correct framing and placement of the camera.
It may be possible to take multiple images of the vehicle
and correlate the system results.

The greatest weakness of the system is the inability of
the segmentation-algorithms (both plate location and char-
acter extraction) to process correctly characters which are
connected to each other or to the border. Nevertheless,
the system gives good performance under widely varying
lighting conditions.

Results compare very favourably with [2], which lists
the most advanced systems known to the authors. These
achieve on average 83% recognition of the complete plate,
rejecting plates which are subjectively poorly lit. The sys-
tem in [4] achieves a 97% plate recognition rate by enforcing
ideal uniform lighting and framing conditions.

REFERENCES

[1] D. Trier, “Software and documentation: Xite - binarize,” tech.
rep., University of Oslo, 1997. ftp://ftp.ifi.uio.no/pub/blab/xite/.

[2] S. Draghici, “A neural network based artificial vision system for

license plate recognition,” International Journal of Neural Sys-

tems, vol. 8, pp. 113-12, February 1997.

D. Ballard and C. Brown, Computer Viston, pp. 151-152. Pren-

tice Hall, 1982.

C.-M. Hwang and S.-Y. Shu et al, “A pc-based car licence plate

reader,” Proc. SPIE, vol. 1823, pp. 272-283, 1992.

S. Haykin, Neural Networks: A Comprehensive Foundation,

pp. 138-229, 363-370. Macmillan, 1994.

D. Hush and B. Horne, “Progress in supervised neural networks,”

IEEE Signal Processing Magazine, vol. 10, pp. 8-39, January

1993.

J. Chang and N. C. Griswold, “A hierarchical multilayer percep- -

tron neural network for the recognition of the automobile licence

plate number,” Proc. SPIE, vol. 2664, pp. 138-144, 1996.

SABS, “Retro-reflective registration plates, South African Stan-

dard SABS 1116-1 to 1116-4,” tech. rep., SABS, 1996.

610

[9] A. K. Jain, Fundamentals of Digital Image Processing. Prentice

Hall, 1989.

